Computation of a useful Cramer-Rao bound for multichannel ARMA parameter estimation

نویسندگان

  • Mrityunjoy Chakraborty
  • Surendra Prasad
چکیده

It has been shown earlier that the problem of multichannel autoregressive moving average (ARMA) parameter estimation can be tackled in a computationally efficient way by converting the given process into an equivalent scalar, periodic ARMA process. This correspondence presents methods to compute the Cramer-Rao bound associated with the identification of the scalar ARMA equivalent of a given multichannel ARMA process. The elements of matrix are obtained by a few very simple operations like periodic AR filtering of certain downsampled versions of the input and output sequences and then cross-correlating the filter outputs. The filter is easily obtainable from the model equation and is common for all the parameters. Fig. 4. Curves of probability of resolution versus SNR (in dB) for various null-spectra, / M U ( # ) , /MN(0),/Mu(0)>/min(0)> and / m a x ( 0 ) , when N = 100, L = 10, AT = 2(0i = 15° and 02 = 17°. Each curve was obtained at interval of 2 dB and each point was obtained from 500 trials).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Cramer-Rao Inequality for Randomly Censored Data

As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...

متن کامل

تعیین حد پائین واریانس خطای تخمین برای زاویه سیگنال دریافتی با استفاده از روش CRB در آنتن های آرایه ای

One of the important issues in many of array systems such as Radar, Sonar, Mobile, and satellite telecommunications is the estimation of DOA of narrowband received signal. CRB is very important in evaluation of parameter estimation. CRB is the lower bound estimation error variance for any unbiased estimation. In this paper, the array antenna with equal distance arrays is extended in two separat...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

تخمین جهت منابع با استفاده از زیرفضای کرونکر

This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...

متن کامل

Cramer-Rao Lower Bound Computation Via the Characteristic Function

The Cramer-Rao Lower Bound is widely used in statistical signal processing as a benchmark to evaluate unbiased estimators. However, for some random variables, the probability density function has no closed analytical form. Therefore, it is very hard or impossible to evaluate the Cramer-Rao Lower Bound directly. In these cases the characteristic function may still have a closed and even simple f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 42  شماره 

صفحات  -

تاریخ انتشار 1994